La Beauté de l’Infiniment Petit Mis à l’Honneur

« La Beauté de l’Infiniment Petit » mis à l’honneur par le concours « Small World Photomicrography« 

Les gagnants du célèbre concours annuel  » Nikon Small World Photomicrography » viennent d’être dévoilés. L’occasion de découvrir en image la splendeur du monde microscopique.

Premier prix : œil d’une Abeille (Apis mellifera) recouvert de pollen de pissenlit (grossissement x 120)

L'infini

2e place : colon de souris colonisé par du microbiote humain (grossissement x 63). La communauté florissante de bactéries (en rouge) est séparée du côlon (en bleu) par une couche de mucus (en vert).

Colon de souris colonisé par un microbiote humain (grossissement x63).

3e place : « bouche » d’Utricularia gibba, une plante carnivore aquatique (grossissement x 100).

3e prix : la "bouche" d'Utricularia gibba, une plante carnivore aquatique.

4e place : glande mammaire cultivée en laboratoire (grossissement x 100).

4e place : de la glande mammaire cultivée en laboratoire (grossissement x100).

5e place : imagerie in vivo de la vascularisation dans le cerveau d’un rat atteint de glioblastome (une forme de tumeur).

14484140

6e place : spore de Bryum sp., mousse de la famille des Bryaceae. Les spores permettent aux plantes sans fleurs de se reproduire.

Une spore de Bryum sp., une mousse de la famille des Bryaceae. Les spores permettent aux plantes sans fleurs de se reproduire.

7e place : étoile de mer vue par microscopie confocale (grossissement x 10).

14484136

8e place : nerfs et des vaisseaux sanguins dans la peau de l’oreille d’une souris (grossissement x 10).

8e place : des nerfs et des vaisseaux sanguins dans la peau de l'oreille d'une souris (grossissement x10).

9e place : jeunes bourgeons d’Arabidopsis, une plante à fleurs (grossissement x 40).

Les jeunes bourgeons d'Arabidopsis, une plante à fleurs (grossissement x40).

10e place : Cyzicus mexicanus, un crustacé de l’ordre des Diplostraca, possédant une carapace à deux valves protégeant le corps, mais pas la tête (grossissement x 25).

Cyzicus mexicanus, un crustacé de l'ordre des Diplostraca, possédant une carapace à deux valves protégeant le corps, mais pas la tête (grossissement x25).


Sources:
Reportage de Lise Loumé
http://www.sciencesetavenir.fr/galeries-photos/sante/20151019.OBS7891/la-beaute-de-l-infiniment-petit-mis-a-l-honneur-par-le-concours-small-world-photomicrography.html
http://www.maxisciences.com/microscopie/l-039-etonnante-splendeur-de-l-infiniment-petit-celebree-par-le-concours-small-world-photomicrography_art36187.html
http://www.maxisciences.com/photographie/le-concours-nikon-small-world-photomicrography-devoilent-les-plus-beaux-cliches-du-monde-microscopique_art17559.html
http://www.nikonsmallworld.com/

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Publicités

16 Milliards d’Euros Investis sur 2 Ans pour l’Innovation et la Recherche

« La Commission européenne a adopté le 13 octobre 2015 un plan visant à stimuler la compétitivité des entreprises européennes en investissant près de 16 milliards d’euros dans la recherche et l’innovation dans les deux prochaines années au titre d’Horizon 2020, le programme européen de financement de la recherche et de l’innovation.

Ce programme soutiendra toute une série d’initiatives transversales : la modernisation de l’industrie manufacturière européenne, nouvelles technologies et norme pour la conduite automatique, l’internet des objets (IoT), la numérisation des industrie de l’Union européenne, etc.

A cela s’ajoute des financements pour la recherche et la sécurité des frontières extérieures de l’Union européenne, afin d’identifier et d’empêcher la contrebande et le trafic d’êtres humains, prévenir la criminalité et le terrorisme, etc. »


Informations

http://www.pic2europe.fr/actualites/16-milliards-deuros-investis-sur-deux-ans-pour-linnovation-et-la-recherche
Communiqué de presse de la Commission européenne : http://europa.eu/rapid/press-release_IP-15-5831_fr.htm
Fiche d’information sur Horizon 2020 : http://europa.eu/rapid/press-release_MEMO-15-5832_en.htm

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Consultation Publique relative aux Modalités des Procédures d’Inspection des Essais Cliniques

« Le 28 août dernier, la Commission a lancé une consultation publique sur les modalités détaillées pour les procédures d’inspection des essais cliniques, conformément à l’article 78 (7) du Règlement (UE) n° 536/2014. Celle-ci est ouverte jusqu’au 24 novembre 2015.

Inspecter_medium

L’objectif de cette consultation est de recueillir l’avis de toute personne ayant un intérêt sur plusieurs points, tels que les règles détaillées régissant les procédures d’inspection des essais cliniques (préparation, conduite, reporting, suivi, communication et tenue de dossiers), la coordination des différents États membres, mais aussi les normes minimales de qualification des inspecteurs. »

Document de la consultation:

public-consultation


Informations:
http://www.pic2europe.fr/votre-avis-sur-leurope/consultation-publique-relative-aux-modalites-des-procedures-dinspection-des-e
http://ec.europa.eu/health/human-use/clinical-trials/developments/pc_gmp_2/public_consultation_implementing_act_on_clinical_trials_inspections_2015.pdf

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Towards Animal- Free Safety Testing of Chemicals

« University of Konstanz participates in major European project « EU-ToxRisk ».
A cross-European flagship project aims at creating the basis for a more efficient and animal-free safety assessment of chemicals : The University of Konstanz joins the large integrated project « EU-ToxRisk« , an international research consortium of 39 partner organisations from industry, research organisations and European regulatory bodies. The European Commission funds the joint project in the context of its research programme « Horizon 2020 » with a total of around 30 million euros.horizon-2020

« EU-ToxRisk » combines the latest research findings from cell biology, so-called Omics-technologies, systems biology as well as bioinformatics in order to analyse the complex chains of events that link chemical exposure to toxic outcome. The consortium will provide proof of concept for a new, animal-free chemical safety testing strategy that is based on the mechanism of cause and effect of toxic processes. These mechanistic test methods will be integrated in testing batteries that are in line with regulatory framework and are aimed at implementation in industry.

At the University of Konstanz, the Chair of in-vitro Toxicology and Biomedicine is involved as partner in this project.

The toxicologist Professor Marcel Leist and his research team in Konstanz study the potential impact of chemicals on the human nervous system and on pre-natal development. For this, the researchers will combine functional tests with modern approaches to evaluate gene expression data of cells under chemical stress. The research team will also develop methods for better risk assessment of chemicals, such as computer prediction models and methods of integrating multiple biological data sets.

« Ethical issues related to animal experiments as well as economic considerations – high costs, time delay by testing – demand a paradigm shift in the safety assessment of chemicals: away from relatively inconclusive animal experiments towards a toxicological assessment based on the analysis of responses to chemicals observed in human cells.

This is the only way to reach a comprehensive, mechanistic understanding of cause and effect of harmful chemical impacts », demands Marcel Leist, who is also head of the Center for Alternatives to Animal Testing-Europe (CAAT-Europe).

« EU-ToxRisk » will kick off in January 2016 at Leiden University (Netherlands), where the project is coordinated. The major European project will run for six years. »


Sources:
http://www.alphagalileo.org/ViewItem.aspx?ItemId=157514&CultureCode=en
http://www.uni.kn
https://plantesetparfums.wordpress.com/2015/10/18/risk-assessment-at-heart-of-eu-toxrisk-project

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Oil Spill Clean-Ups Using Fruits & Oils

« This week (19th Oct–24th October) is Real Time Chem Week; as part of it, we’re featuring the RTC Week competition-winning entries of five different chemists here on Compound Interest, with a different feature every day this week.
Today’s feature takes a look at how we can use chemistry to help clean up oil spills – and how the chemicals we use to do so can come from some unlikely sources.

JulianSilverman

RTCW2 – Oil Spill Clean-Ups with Fruits & Oils

Julian Silverman is currently researching how compounds obtained from fruits and oils can be utilised in a number of applications, including helping to clean up oil spills at sea. Here, he explains the chemistry behind the process and how it works.

One of the many focuses in the John’s Lab at the City College of New York is to clean up oil spills using chemicals made from renewable resources like fruits and oil. First we do a bit of good old organic chemistry and link fatty acids from edible oils and sugars from raspberries or monkfruits. This creates what we call an ester, a bond strong enough for the applications to come, but not too strong.

We do this using nature’s most efficacious workers (enzymes) to speed things up and make a product that will easily break down after it’s done being used. Here, not only is the product environmentally friendly, but so too is the low energy catalytic process which we use to make it.

Next, we do a little supramolecular chemistry, or to put it another way: Lego with molecules. Because the forces between the molecules we make are so specifically tuned, they are capable of stacking like the bricks into long strings in solution, which then entangle like a sponge to form a gel and trap liquid around it.

While most gels are used to trap water (like Jello), these gels because of their composition are best at turning water-fearing, or apolar liquids into gels. Examples of such liquids include cooking oils for trans-fats replacements, hydrocarbons for next-generation fuels which don’t spill, and, particularly importantly, crude oil. This means they can be used to turn spilled oils and fuels into gels that then can be easily scooped up and taken out of the environment after a devastating oil spill.

Taking this even one step further, these gels can be squeezed or distilled to give you back your spilled liquid, and this should prove to become a much better way to clean up oil spills. By doing a little bit of chemical engineering and materials science we can make sure these gels are strong enough to be taken out of aquatic environment, or in the case of thickened edible oils, soft enough to be spread easily but retain their shape.

By being both the designer of the molecules and also the engineer who tailors them to applications we have a complete control over the design process, which allows us to create sustainable solutions to a variety of problems. As these molecular gels are made of small molecules (not much bigger than table sugar) our work qualifies as nanotechnology, which focuses on systems that are a billionth the size of, for example, yourself. Though this work jumps between sub disciplines in chemistry and engineering, by leveraging out tools in each we can strive to solve the complex problems of today, and perhaps prepare ourselves for those of tomorrow.

Further Reading:


Source:
http://www.compoundchem.com/2015/10/20/rtcweek2/

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Study Reveals a Key Role your Gut Bacteria Play in Body’s Self- Defense

« Scientists in Sweden have discovered that human intestinal flora regulates the levels of the body’s main antioxidant, glutathione, which fights a host of diseases. The findings could lead to new probiotic-delivering foods, and a better understanding of the metabolic processes behind diseases such as type 2 diabetes.

Chalk up another reason why your gut bacteria is so critical to your health — and why it could be the key to preventing a host of diseases. Scientists in Sweden have discovered that human intestinal flora regulates the levels of the body’s main antioxidant, glutathione, which fights a host of diseases.

The study could lead to new probiotic-delivering foods, and a better understanding of the metabolic processes behind diseases such as type 2 diabetes, says co-author Adil Mardinoglu, a systems biology researcher at Stockholm’s KTH Royal Institute of Technology.

Published in the scientific journal, Molecular Systems Biology, the findings help complete our understanding of how nonessential amino acids are synthesized to equip the body’s cells with detoxifying agents and antioxidants, Mardinoglu says.

« Gut microbiota regulates your glutathione and amino acid metabolism — not only in the small intestine but also in the liver and the colon, » he says.

mousediagramA diagram illustrates the relationship between the mouse’s gut bacteria and the regulation of glutathione in the liver and colon.

The small intestine is host to more than 1,000 known different species of bacteria. Some of these microbiota were found to be consume glycine, which is one of the three amino acids required for the synthesis of the body’s glutathione. In a test with bacteria-free mice, the researchers measured the level of the amino acids in the portal vein, the main vessel that drains blood from the gastrointestinal tract and spleen to the liver. They found a lower level of glycine in the liver and colon tissues, which indicated that the gut bacteria regulates glutathione metabolism in those organs, too.

Mardinoglu points out that since decreased levels of glycine and other amino acids have been linked to type 2 diabetes, non-alcoholic fatty liver disease and other metabolism-related disorders, further study of microbial amino acids in the human gastrointestinal tract could shed light on the development of these diseases.

The link between gut bacteria and glutathione metabolism could lead to the development of food products that can deliver beneficial bacteria, or probiotics, to the gut, » Mardinoglu says. « These results can be used to understand how bacteria play a role in the metabolic processes involved in the development of obesity, type 2 diabetes, non-alcoholic fatty liver disease as well as malnutrition. »

 

mouseA generic map of mouse metabolism was created and tissue-specific computer models for major mouse tissues were generated. Through integration of high throughput experimental data, the researcher found that the microbiota in the small intestine consumes glycine which is one of the three amino acids required for the synthesis of the glutathione. The results were confirmed in live lab tests. »

Publication:

Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen J (2015), The gut microbiota modulates host amino acid and glutathione metabolism in mice, Molecular Systems Biology, 11: p 834


Sources:
http://www.alphagalileo.org/ViewItem.aspx?ItemId=157450&CultureCode=en
http://msb.embopress.org/content/11/10/834

 Cet article n’engage que son auteur/ This article is the sole responsibility of the author

Scents and Sense Ability: Diesels Fumes Alter Half the Flower Smells Bees Need

« In polluted environments, diesel fumes may be reducing the availability of almost half the most common flower odours that bees use to find their food, research has found.
The new findings suggest that toxic nitrous oxide (NOx) in diesel exhausts could be having an even greater effect on bees’ ability to smell out flowers than was previously thought.

BeeImage shows an electron scanning microscope image of a bee.

NOx is a poisonous pollutant produced by diesel engines which is harmful to humans, and has also previously been shown to confuse bees’ sense of smell, which they rely on to sniff out their food.

Researchers from the University of Southampton and the University of Reading found that there is now evidence to show that, of the eleven most common single compounds in floral odours, five have can be chemically altered by exposure to NOx gases from exhaust fumes.

Lead author Dr Robbie Girling, from the University of Reading’s Centre for Agri-Environmental Research (formerly of University of Southampton), said: « Bees are worth millions to the British economy alone, but we know they have been in decline worldwide.

« We don’t think that air pollution from diesel vehicles is the main reason for this decline, but our latest work suggests that it may have a worse effect on the flower odours needed by bees than we initially thought.

« People rely on bees and pollinating insects for a large proportion of our food, yet humans have paid the bees back with habitat destruction, insecticides, climate change and air pollution.

« This work highlights that pollution from dirty vehicles is not only dangerous to people’s health, but could also have an impact on our natural environment and the economy. »

Co-author Professor Guy Poppy, from Biological Sciences at the University of Southampton, said: « It is becoming clear that bees are at risk from a range of stresses from neonicitinoid insecticides through to varroa mites. Our research highlights that a further stress could be the increasing amounts of vehicle emissions affecting air quality. Whilst it is unlikely that these emissions by themselves could be affecting bee populations, combined with the other stresses, it could be the tipping point. »

This latest research is part of continuing studies into the effects of air pollution on bees. Previous work in 2013 found that bees in the lab could be confused by the effects of diesel pollution. Dr Girling and Dr Tracey Newman from the University of Southampton are currently studying how diesel fumes may have direct effects on the bees themselves.

The work is published in the Journal of Chemical Ecology and was funded by the Leverhulme Trust. »

Publication :

‘The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction’
Inka Lusebrink , Robbie D. Girling, Emily Farthing, Tracey A. Newman, Chris W. Jackson, Guy M. Poppy,
Journal of Chemical Ecology DOI 10.1007/s10886-015-0624-4


Sources:
http://www.alphagalileo.org/ViewItem.aspx?ItemId=157482&CultureCode=en
http://link.springer.com/article/10.1007/s10886-015-0624-4

Cet article n’engage que son auteur/ This article is the sole responsibility of the author

%d blogueurs aiment cette page :